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Abstract

As field programmable gate arrays become larger and more complex, system
developers look to purchase off-the-shelf cores from specialized core vendors to save
on development costs. The FPGA “cores industry” is rapidly growing but is ham-
pered by the inability of cores owners to enforce licensing, which leads to a less
than ideal blanket licensing arrangements which are based on personal trust and
paper agreements. This works well for large reputable companies that can front the
money in advance and have a lot to lose from breach of contract, though less well
for new companies, hobbyists and academics. In this paper we describe a new cryp-
tographic method that allows system developers to integrate externally-developed
cores into their own designs while still letting cores vendors enforce licensing terms.
Our scheme only requires modest additions to the FPGA’s configuration logic and
software tools while only using established primitives. By partitioning the design
ahead of time and using currently available design methods, the system developer
allocated portions of the FPGA off-the-shelf cores. Bitstream portions correspond-
ing to these partitions are encrypted by the cores vendors, assembled by the system
developer into a single bitstream and are decrypted in the FPGA using symmetric
and asymmetric cryptography methods.

1 Introduction

Field programmable gate arrays (FPGA) are generic semiconductor devices made up of
interconnected functional blocks that can be programmed, and reprogrammed, to per-
form user-described logic functions. Since the early 2000s, FPGA vendors have gradually
absorbed into the FPGAs functions that previously required peripheral devices. 2008’s
FPGAs have embedded processors, giga-bit serial transceivers, clock managers, analog-
to-digital converters, digital signal processing blocks, Ethernet controllers, megabytes of
memory, and other functional blocks beyond the arrays of basic logic elements they started
out with in the mid 1980s. We are also seeing a process of industry-specific sub-families
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within a single family of devices that cater to embedded, DSP, military and automotive
applications; this means that the distribution of the various embedded blocks is different
across family members.

Design protection schemes suggested up to now dealt with the protection of a complete bit-
stream, not bitstreams consisting of several cores from several independent parties. In this
contribution, we extend the design protection scheme for FPGAs presented by Güneysu
et al. [13] to provide core vendors with means to determine exactly how many copies of
their design were made, even if their cores are part of a larger designs. Through a rela-
tively simple cryptographic exchange, we are able to provide core owners to control the
number of copies made of their core without requiring changes to the FPGA use model of
secure software components operating on the system developer’s servers. We do not re-
quire a cryptographic components for key establishment in the static configuration logic,
but instead use the user logic for a setup process based on public key cryptography.

This contribution is organized as follows: we start by introducing the main issues of cores
protection for FPGA devices, define the principals involved, and discuss the basic security
primitives we use. Next, after reviewing prior work and existing solutions for FPGA core
protection, we present our scheme for single and many-core designs in Sections 3 and 4.
In Section 5 we discuss the necessary requirements and assumptions and evaluate our
scheme in Section 6. Finally, we present implementation details of a first proof-of-concept
solution which shows the feasibility of our proposal even with today’s small FPGAs.

1.1 The cores distribution problem

Cores are ready-made functional blocks that allow system developers to save design cost
and time by purchasing them from “external” designers and integrate them into their own
design. A single core can also occupy the entire FPGA to create a “virtual application
specific standard products” (vASSP) [16]. Core designers sell their cores in the form of
hardware description language (HDL) or complied netlists, while FPGA vendors provide
some cores for free (they profit from FPGA sales, not cores) as do open-source core
designers. There exists commercial or free cores for nearly every popular digital function.

In a constraint-free world, an ideal distribution model will allow us to distribute cores
from multiple vendors to a single system developer such that he can evaluate, simulate,
and integrate them into his own design while 1) the cores’ confidentiality and authenticity
are assured, and 2) the core vendor is able to enforce a limit on the number of instances
made of any core, and make every instance of it restricted to operate only on a specific set
of devices. We must first reason, however, why this model is better than what is available
today. The growth in both capacity and application space of FPGAs has started a now
flourishing industry for the sale of ready-made designs that are sold to system developers
to be integrated into their own FPGA designs. Performance optimized (in both size and
throughput) FPGA design now requires specialized skill, and in many cases it makes
economic sense to purchase certain functions rather than designing them from scratch
in-house.

The “design-reuse” industry has dealt with cores distribution by mostly relying on social
means such as “trusted partners” and reputation, which works well for established corpo-
rations but much less so for unrecognized start-ups in, for example, Asia. An industry-
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wide panel discussion in early 2007 about encrypted software flow for secure ASIC cores
distribution (with FPGA considerations added on as an attachment) provides some in-
sight into how large corporations view the issue [25, 26]. The representatives from these
large corporations agreed that the trust-based system is working well for them, and a
better solution is desirable for the long-run, but is not necessarily urgent. This conclusion
is quite understandable for these companies, who are large enough to still design and
fabricate ASICs, though the situation for FPGAs is quite different.

Many system developers opt to use FPGAs precisely because they cannot afford to pro-
duce an ASIC or have the money to pay up-front for a core before their products are
successful. Their trustworthiness is determined by the cores vendors based on their own
risk perception after assessing the locale and people behind the company. One FPGA
cores vendor we spoke to confirmed that this is indeed the case, and that a “small num-
ber” of initial request are rejected on the basis of trust. After the initial development of
a core, roughly half of the effort is invested in pre-sale support with a potential customer.
This includes discussing the needs; educating the customer about the core’s function;
preparing a simulation model and an evaluation core for integration with the developer’s
design; and, supporting the simulation and integration process. The effort invested up
to this point by the vendor may not yield any returns if the customer decides not to
purchase the core after all. The risk is not only losing the time spent, but also that the
evaluation core supplied be used without compensation. When there is a purchase, the
customer pays a blanket license for the core and legal documents are signed for its pro-
tection. What the customers get is an unrestricted HDL of the core, which can be fully
integrated into their own designs. The rest of the effort is put in post-sale support: full
customization of core, last minute changes and requirements, and so on.

Most of what the customer pays for, then, is customization and support, rather than for
the initial development costs.

1.2 Principals

In this section we will introduce principals as well as notation used throughout the paper.
“A principal is an entity that participates in a security system. This entity can be a
subject, a person, a role, or a piece of equipment, such as a PC, smartcard, or card-
reader terminal” [3, p.9]. FPGAs, FPGA vendors, designers, programming cables etc.
are principals interacting in a system whose security we are concerned with. Introduced
below are the principals that partake in the design and distribution of FPGA products,
along with their security requirements.

FPGA vendors (FV) introduces a new FPGA family roughly every 12 to 18, each
costing many millions of dollars do design, fabricate, and test for production. The amount
of transistors that can fit on a die is limited, so vendors only introduce embedded functions
that are needed by the majority of their customers or several large ones, or are in-line with
a long-term marketing strategy. Customers must be willing to pay for all the functional
blocks on the die (by accepting the price of the FPGA) even if those end up being unused
in the design. This is important to remember when we consider the addition of security
features to FPGAs, as they must be financially profitable to the FPGA vendors.

Security-wise, FPGA vendors have two dominant concerns. Firstly, they are interested in
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protecting their own proprietary designs and technology from being reverse engineered,
copied, exposed, or modified. Secondly, they want to provide their customers means to
protect their own designs throughout the design flow and in the field. They also have the
incentive to provide means to enable secure distribution of cores since that translates into
increased FPGA sales, by making FPGA designs more widely accessible.

System developers (SD). incorporate FPGAs into their system, and can be divided
into two groups based on their security needs and views. Cost-conscious are the designers
of commercial products who have the goal of meeting the product’s specifications at the
lowest cost while maintaining reliability. Often, there is a trade-off between system per-
formance and cost, with a general tendency by engineers/management to resist additional
components, design delays, and decrease in reliability that translates into higher main-
tenance and support costs. Therefore, a design protection scheme must make economic
sense, and may only need to be effective for the lifetime of the product, from months
to few years. Security-conscious designers and security-industry system developers are
concerned with protecting designs, methods of operation and communications for a sub-
stantial length of time — from years to decades — while cost considerations may be
secondary if those imply compromise of security.

In this paper we concentrate on the cost-conscious developers that is comfortable buying
and using off-the-shelf components and together with the cores vendors is looking for a
easy-to-use and logistically cheap protection scheme.

We have already introduced the cores vendors (CV), and finally, there are trusted
parties (TP). In order to reach the security goals of a protocol, a principal that is trusted
by all other principals is often required for storing, processing and transferring data and
keys. It is easy to add a trusted parties to a protocol though they are best avoided since
implementing them in reality is difficult. The centralized nature of a trusted party makes
it vulnerable to denial of service attacks, and a lucrative target for attackers. In addition,
it may not even be possible to find one principal that is mutually trusted by all others.
More practical issues such as location, trusted personnel, physical security and so on are
also problematic.

1.3 Security

We define the following set of principals,

Z = {FV, CV, SD},

in addition to FPGA itself, which is an active participant in the protocol. A symmetric
key defined by principal z ∈ Z is denoted as Kz, and an asymmetric public and private
pair of keys are noted as PK z and SK z, respectively. Then index i will denote multiple
principals of the same kind. Now we briefly discuss the cryptographic primitives we will
use to describe ours and others’ protocols.

Cryptographic hash function. Cryptographic hash functions are one-way functions
which take arbitrary length string as input and map it onto a fixed length bit string. A
cryptographic hash of a message can be considered its static-length signature or unique
fingerprint. This is because cryptographic hash functions provide strong collision resis-
tance and preimage intractability, which means that it is nearly impossible to find two
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different inputs that produce the same hash and find the input that yielded a given hash.
Most security applications employ cryptographic hash functions as utility functions for
data compression and aggregation to reduce the computational complexity of subsequent
operations like the generation of digital signatures.

Symmetric cryptography: For design protection and configuration confidentiality,
some FPGAs already implement symmetric encryption based on well-known block ci-
phers like AES and 3DES. Such cryptographic functionality can be used for more than
just confidentiality: in the CMAC construction [10], a computational process mostly iden-
tical to that of CBC encryption with a block cipher is used to generate a one-block message
authentication code (MAC). Thus, to keep the footprint of the cryptographic component
small, an implementation of a single block cipher can be used both for decryption and for
MAC verification, using a CBC scheme in both cases. Using separate block cipher keys,
a combination of such a MAC with encryption can achieve authenticated encryption [6]:
we simply have to provide a MAC of the CBC-encrypted ciphertext. We can consider
the pair of such keys a single (longer) key k. Throughout this paper, we will write Ek(x)
for authenticated encryption of a value x (the plaintext) yielding a ciphertext including
a MAC value, and E−1

k(y) for the reverse step of decryption of a ciphertext y while also
checking for an authentication error based on the MAC value provided as part of the
ciphertext.

The use of CBC for confidentiality with CMAC for authentication is just an example of
a convenient scheme. Alternatively, we could use any suitable symmetric cryptographic
scheme that provides authenticated encryption in an appropriate sense. As an imple-
mentation note regarding the particular combined scheme using CBC with CMAC, note
that an implementation of either block cipher encryption or block cipher decryption is
sufficient in the FPGA: we can arrange to use the block cipher “in reverse” for one of the
two cryptographic steps, e.g. use a CMAC based on block cipher decryption rather than
on block cipher encryption.

Asymmetric cryptography: Using asymmetric (or public-key) cryptography, a pair of
keys, public (PK ) and private (SK ), can be used for secure communication over insecure
channels without prior key establishment. Since asymmetric cryptography is much more
computationally demanding than symmetric cryptography, it is commonly used to estab-
lish symmetric keys at the initiation of the communication and then use the generally
faster symmetric cryptographic. The first publicly known example of public-key cryptog-
raphy was the Diffie-Hellman (DH) scheme [8], which can be used to establish keys for
symmetric cryptography.

In conjunction with a key derivation function (KDF) based on a cryptographic hash func-
tion (H), Diffie-Hellman remains state of the art. For example, given any two principals
A and B with their corresponding public and private keys (PK A, SK A) and (PK B, SK B)
and an additional bit string data, where the keys were generated based on common do-
main parameters, the parties can determine a common symmetric key. This is done by A
performing

KAB = KDF(SK A, PK B, data) = H(DH(SK A, PK B), data),

by first computing the Diffie-Hellman result based on the key pairs, and then applying
the KDF using a secure hash function. Principal B then computes

KAB = KDF(SK B, PK A, data) = H(DH(SK B, PK A), data),

5



to get the same key on his end. The result is that both principals derive the same
symmetric key without revealing they private keys; all they had to do was to before
communication was to agree on domain parameters, and exchange data, which can be
considered public.

The recommendations in [5] for static-key Diffie-Hellman settings additionally require the
use of a nonce in the KDF input for each invocation of the key establishment scheme.
This use of non-repeated random values ensures that different results can be obtained
based on otherwise identical inputs. However, we do not need this nonce here: for our
application, the reproducibility of key establishment results is a feature, not a deficiency.
A variant of Diffie-Hellman uses elliptic curve cryptography [7], ECDH; a key establish-
ment scheme based on Diffie-Hellman, including the ECDH variant is described in detail
in NIST publication 800-56A [5].

2 Prior work and protection schemes

At this stage it is important to distinguish between two types of design protection. “Prod-
uct protection” is when the system developer protects his own product — which may or
may not contain cores from other parties — from cloning and reverse engineering by ma-
licious users. “Core protection” is when cores vendors protect their designs from cloning
and reverse engineering by malicious users and the system developers. The difference is
important for the rest of our discussion.

In response to cloning of FPGA bitstreams, FPGA vendors introduced bitstream encryp-
tion as a “product protection” measure. This works by the system developer programming
a key into the FPGA, encrypting the bitstream with the same key, and when the FPGA
is programmed with this bitstream, an internal decryptor decrypts and the FPGA is con-
figured. Bitstream encryption is now common in high-end FPGAs. Keys are stored in
either battery-backed volatile or non-volatile memory, and some devices provide both,
though currently this functionality is restricted to a single key. Cloning deterrents that
rely on the secrecy of bitstream encoding are also a measure for “product protection”.
These are not cryptographically secure but may increase the cost of cloning sufficiently
to be useful for some designers, and are also available for those devices without bitstream
encryption. In 2000, Kessner [17] was the first to propose an FPGA bitstream theft de-
terrent with a CPLD sending a keyed LFSR stream to the FPGA for comparison to an
identical local computation to verify that it is mounted on the right circuit board. More
recently, both Altera and Xilinx proposed very similar challenge-response schemes [1, 4]
as cloning deterrents where the bitstream authenticates the board it is “running” on by
a challenge-response exchange with a cryptographic processor placed on the board. The
shared key is stored on the processor, but is only hidden in the bitstream that is loaded
onto the FPGA. Kean [14, 15] proposed schemes based on a static secret key already in-
serted during the manufacturing process. The issue of key transfer is solved by including
cores both for encryption and for decryption in the FPGA: an FPGA specimen containing
the appropriate key can be used to encrypt a configuration file, yielding a configuration
that will work for itself and for other FPGAs sharing the same fixed key. Kean [16] also
proposed a more complex token-based protocol which requires additional resources in the
configuration logic. More crucially, it requires the participation of the FPGA manufac-
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turer (as a trusted party) whenever a bitstream is to be encrypted for a particular FPGA,
which means that such transactions cannot be kept just between the IP vendor and the
customer.

The scheme described by Güneysu et al. [13] presents a two-stage protocol for establishing
keys in an FPGA without personal interaction of the FPGA vendor but it protects, and
allows the license of a single core from a single vendor. In fact, it assumes the vASSP
scenario where a system developer licenses a complete bitstream that occupies the whole
device without adding any contribution of his own. When this is the case, we can achieve
the same results as in Güneysu et al. if the cores vendor programs the decryption keys
into the FPGA’s non-volatile key storage and sells the devices, complete with bitstream,
directly to the system developer. However, we believe that virtual ASSPs are only a
minor part of the market, and the majority of the business is in licensing cores such that
they can be integrated into the system developer’s design. In this context, a challenging
scenario is to realize a protection scheme covering multiple cores from multiple vendors
assembled together into a single design by the system developer. In this paper we address
these scenarios by describing a mechanism that can enable it, which still maintaining the
same properties set by Güneysu et al.

Several FPGA families have hard embedded processors, while soft ones, such as Nios
and MicroBlaze, can be instantiated using the regular HDL flow in user logic. These are
used to execute instruction sets corresponding to the architecture, as would otherwise
be possible if the processor was an external device. The code is written in a high level
language such as C, compiled, and becomes part of the bitstream as RAM; this compiled
code may be updated without fully reconfiguring the rest of the user logic. Simpson and
Schaumont [23] address the scenario where the system developer creates a design that
uses either a hard or soft processor, but is able to accept updates to the compiled code
from third parties. Their protocol is able to authenticate and decrypt code based on keys
and challenge-response pairs derived from an embedded PUF. This requires the FPGA
vendor to collect many challenge-response pairs of vectors from the PUF and enroll those,
along with the FPGA’s unique identifier, with a trusted party. Then, cores vendors enroll
their compiled code, along with a unique identifier, with the trusted party. Through
several exchanges between principals and the mutually trusted party, the compiled code
is encrypted such that it can only be used in FPGAs that can reproduce the correct
PUF response given a certain challenge vector. The scope to which this scheme applies is
limited to the secure distribution of compiled code for embedded processors and does not
apply to cores that use the FPGA’s user logic. Guajardo et al. [12] suggest enhancements
to this protocol and also describe an implemented PUF, as discussed in Section 6, which
was originally simulated by an AES core by Simpson-Schaumont.

3 Single core protection

For clarity, a list of principals and notations in given in Table 1.

We now describe in more detail the scheme proposed by Güneysu et al. [13] for a single
FPGA. In this scheme we describe the business use case where a system developer likes to
license a virtual ASSP from a core vendor, i.e., the core vendor provides the design as a
bitstream which should be installed on SD’s FPGA products. Our protocol is principally
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Notation Meaning
FPGA The physical FPGA
FV FPGA vendor
CV Cores vendor
SD System developer
FID A unique FPGA identification number
K, {PK , SK} Symmetric and {private, secret} key pair
DH Diffie-Hellman key establishment
H Cryptographic hash function
KDF Key Derivation Function
E, E−1 Symmetric encryption and decryption
CORE, COREKz Bitstream as plaintext and ciphertext
PB, PBKz Personalization bitstream in plaintext and ciphertext

Table 1: Principal and notation summary.

based on the idea of establishing a shared secret key KCV between the FPGA and the cores
vendor in the untrusted domain of the system designer since this is a “cores protection”
problem. The key KCV is used by the cores vendor to encrypt his core, which can then
only be decrypted by the specific FPGA which is able to derive the same secret key
using a key establishment protocol. Note that the following description covers the steps
performed by each party according to an ideal protection protocol, i.e., assuming that
all parties behave as desired without any fraud attempts or protocol abuse. Our scheme
consists of of four main stages, as follows:

A. SETUP. This initial step has to be done by the FPGA vendor only once when a
new family or class of FPGA devices is launched. For a group of devices, the FPGA
vendor generates a public key pair first and creates a specific bitstream containing
an algorithm for establishing symmetric keys using public-key cryptography. We
denote this bitstream as a Personalization Bitstream (PB) since it will be used to
install a secret key KCV in the FPGA’s keystore which can be used by the core vendor
to bind the FPGA design specifically to this device using symmetric encryption of
the bitstream. Since the PB contains secret key information from the FV required
for this process, only an encrypted version of the PB is distributed, together with
the public key of the FPGA vendor.

B. LICENSING. Assume a system developer to license a vASSP bitstream from a core
vendor. Then, the core vendor generates a public key pair for this specific customer
and provides the public key part to the system developer. In turn, the SD transfers
a unique device identifier FID of each FPGA to the core vendor on which the SD
intends to use the licensed IP. In his trusted domain, the core vendor then derives
a unique symmetric and device-specific key KCV which is derived using public-key
crypto involving the keys from FV and CV as well as the received device FID . The
exact specification of the involved Key Derivation Function (KDF) will be explained
later on. For each distinct key KCV (and thus FPGA), the core vendor encrypts the
licensed design FPGA and sends the encrypted bitstreams to the system developer.
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C. PERSONALIZATION. Next, the same keys, which have been previously used by
the core vendor to encrypt the vASSP bitstream, are established on the correspond-
ing FPGA devices at the system developer’s place. The system developer loads the
PB(and CV’s public key) on each FPGA device which has been specified to the core
vendor before with its individual FID . With the PB the key establishment scheme
installs the same device-specific key KCV in the FPGA based on the his and FV’s
key information and the received device FID .

D. CONFIGURATION. Finally, due to the binding of the key KCV to a device, the
SD can use each specifically encrypted bitstream only on that FPGA on which the
appropriate key is available.

Let us now consider the details. For the protocol to work, the FPGA vendor is required
to provide the following. Firstly, each FPGA must have an embedded unique, non-secret,
identification number (FID). This can be done by the foundry or at the FPGA vendor’s
facility, though there must be certainty ID’s are unique for each FPGA. Secondly, each
FPGA must have embedded in it a unique symmetric key, KFPGA, in non-volatile key
storage that is readable only by the decryption core; this is done in a secure facility by
the FPGA vendor. This key, KFPGA, is used to decrypt the encrypted (and authenticated)
personalization bitstream, PB later on. Thirdly, as already explained, the FPGA vendor
generates a public key pair, (SKFPGA, PKFPGA) for a family of devices. Finally, the
vendor creates the PB that contains the private key SKFPGA shared among the same
device family and the circuit required to derive a symmetric key used to establish KCV

using a Key Derivation Function (KDF). In the actual licensing process, the FPGA
vendor does not play an active role and only participates in the setup stage. Hence, the
information exchange between the parties is relatively simple. Figure 1 shows the data
flow between the participants.

The personalization bitstream, shown in Figure 2, is vital to the security of our scheme
because it contains the FPGA vendor’s secret key SKFPGA (for a group of FPGAs), with
which an attacker (or FPGA owner) could establish duplicate keys. Thus, this bitstream
is encrypted (and authenticated) using KFPGA to produce PBKFPGA

= EKFPGA
(PB). As

explained above, the core vendor generates a public key pair (SKCV, PKCV), e.g., for
each individual system developer SD and IP core, denoted as CORE. Using this key and
the FID of the FPGA, the CV generates an shared encryption key KCV for each device
by computing

KCV = KDF(SKCV, PKFV, FID)

which is used to encrypt CORE to COREKCV
= EKCV

in a next step.

Now, to prepare the FPGA for running the licensed core, the system developer configures
it with PB and initiates the key establishment by loading PKCV from the cores vendor
to the device. The key establishment within the PB generates the key using the following
function

KCV = KDF(SKFV, PKCV, FID)

is produced and stored in the fabric writable register (only readable by the decryp-
tion cipher) in the device. Now, the FPGA can be programmed with the licensed core
COREKCV

.
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A. SETUP :
FV SD

EKF P GA
(PB)

FID, PKFPGA, PBKFPGA−−−−−−−−−−−−−−−−−−−−−→
B. LICENSING :

CV SD
FID, PKFPGA←−−−−−−−−−−−

verify certificate PKFPGA
KCV = KDF(SKCV, PKFPGA, FID)

EKCV (CORE)

PKCV, COREKCV−−−−−−−−−−−−−−→
verify certificate PKCV

C. PERSONALIZATION :
SD FPGA

PBKFPGA−−−−−−−→
E−1(PBKFPGA )

PKCV−−−−→
KCV = KDF(SKFPGA, PKCV, FID)

D. CONFIGURATION :
SD FPGA

COREKCV−−−−−−−−→
E−1(COREKCV )

Figure 1: The protocol description. Note that the system developer and core vendor
must verify the certificate of public keys in order to prevent attackers from being able to
decrypt the cores or insert malicious functions into designs.

Figure 2: Step 1 of the “personalization” process begins by configuring the FPGA with
PBKFPGA

= EKFPGA
(PB) decrypted and authenticated by the stored KFPGA. In Step 2

CV’s public key PK CV is sent through the configuration port and together with SK FPGA

and FID contained in the FPGA and the PB, the shared key KCV is computed and stored.
Finally, in step 3 the encrypted core is sent to the FPGA and decrypted using KCV.
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Figure 3: Initially, the system developer budgets the design and assigns partitions to cores
vendors; this is done using a partitioning report made by the tools. At the end of the
protocol run the cores are “stitched” together (or superimposed on a full bitstream). A
post processing tool creates a bitstream that has contiguous frames based on key domains.

4 Many-core protection

In the previous section we described one solution to the virtual ASSP problem, where a
single licensed bitstream is loaded onto the device with no contribution from the system
designer. However, we need a solution of wider scope where the system developer incor-
porates cores from multiple vendors into a single design with his own contribution. We
now extend the previous scheme such that multiple cores from multiple sources can be
protected while allowing the system developer to add his own circuit into the design and
the cores vendors to enforce the licensing agreement.

The primary observation is that the further up we go in the development flow, bitstreams
being the lowest level, the harder it is to protect licensed designs. This is because the
higher we go more tools and principals are involved, all of which need to be trusted (to
various degrees) in order to implement the protection scheme. For example, delivering
encrypted netlists requires the synthesizer and all the tools used thereafter to maintain
the confidentiality of the design. When these tools come from various vendors it becomes
increasingly harder to have a ubiquitous protection scheme that is also secure, especially
if the software is required to be run on an untrusted client. Our conclusion, therefore,
is that the most appropriate place where the combination of cores can occur is at the
bitstream level, where decryption only takes place within the FPGA itself.

An overview of the scheme is shown in Figure 3. The system developer starts by parti-
tioning the design into functional blocks and assigning physical allocations for them inside
of the FPGA. The diagrammed “FPGA” is divided into an array of blocks, which provide
the granularity of the partitioning; those blocks can be thought of as the FPGAs “frames”
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Figure 4: For multi-core protection, the personalization bitstream configuration logic can
handle multiple keys KCVi

. In addition to the FPGA vendor’s FPGA key, there is storage
for up to m decryption keys.

that are the configuration bitstream’s building blocks. For each of these partitions the de-
veloper decides if it is going to be purchased from a core vendor or designed internally. At
this stage, the interface between the blocks must also be defined (preferably using widely
established macros though this is not strictly necessary if the interface can be agreed upon
between the parties). This information is processed by a tool that produces a “partition-
ing definition” file containing all the information required for the FPGA software flow to
confine a design to the allocated partition from HDL to the bitstream. With this file all
parties can synthesize, place-and-route, and create a bitstream portion that corresponds
to the allocated FPGA partition. The definition file is distributed in the licensing stage
of the protocol, only this time with multiple core vendors. Now the system developer
has bitstream portions corresponding to each partition, and those are encrypted under
the respective core vendors’ keys, COREKCV1

, . . . , COREKCVm
, as shown in Figure 3(b).

These portions are processed by a tool that “stitches” them together to produce a full
bitstream, shown in Figure 3(c) (the stitching process may simply be superimposing the
partial bitstreams onto a complete bitstream). Moreover, the system developer also has
the core vendors’ public keys corresponding to the design, PKCV1 , . . . , PKCVm .

The system developer now loads the personalization bitstream onto the FPGA and then
sends iteratively the PKCVi

which produces the respective KCVi
in the configuration logic;

this process is shown in Figure 4. The bitstream of Figure 3(c) cannot be loaded yet (as
normal) because of the different key domains. Thus we require an additional command in
the bitstream that tells the configuration logic which key to use to decrypt the bitstream.
Another command we require is the one telling the configuration logic where to load the
next frame. Using the partitioning file, a tool then rearranges the bitstream such that
frames belonging to each key domain are contiguous, with the addition of the “use KCVi

”
instruction at the beginning of the block, and then “go to frame address X” between
sub-blocks such that these are configured at the right place. Such a bitstream is shown
in Figure 3(d).

For this scheme to work, we require the software to support a complete modular design
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flow from HDL to bitstream generation, and to be able to “stitch” bitstreams based on
particular partitions. In most part, this functionality is already present in some tools.
Currently, the Xilinx and Altera tools support modular design to help developers cope
with large designs that involve multiple teams working separately. Modular design allows
the partitioning of the design such that portions can be held constant while others are re-
synthesized in order to help portions of large designs be implemented by separate teams.
When all partitions are complete, a “final assembly” maps, places and routes all of them
together to generate a single bitstream. Bitstream-level partitioning is already supported
by the Xilinx tools for partial reconfiguration, where portions of bitstreams are created
that can reprogram portions of the device while the rest is operating as normal. In order
to achieve this, interfaces between the partitions are defined such that the process of
partial reconfiguration does not create contention.

In terms of additional hardware functionality, our scheme requires additional volatile
or non-volatile (one-time programmable) symmetric key storage, one each for each core
requiring protection. As with KCV these keys are user-logic-writable but only readable
by the decryption core; these keys are called KCVj

, where j ranges from 0 to m. They are
generated, as before, by using the personalization bitstream to process KCVj

’s up to m.
If the keys are stored in non-volatile memory then this process only happens once by the
system developer. If volatile storage is used, the shared keys need to be regenerated on
every power-up (PKCVi

’s loaded via PROM). Note also that in this case a larger external
configuration memory is required to store the PBKFPGA

and application bitstream. The
advantages of the latter is that keys are only generated when needed, and can be erased
after configuration. In addition, volatile storage allows changing of the keys and is less
prone to mishaps of wrong key configuration.

4.1 Key management

In Section 3 we discussed having a single symmetric key KCV per FID . In the multi-core
licensing model, we can establish multiple keys for each individual core still using only a
single FID . More precisely, each contributing CV will generate a distinct key pair (SK CVi

,
PK CVi

) for use with his individual CORE. Due to the different key pairs as input to the
KDF totally different key KCVi

will be created by the PB and written to the key store
of the FPGA - although all relying on the same FID :

KCV1 = KDF(SKFV, PKCV1 , FID)

. . .

KCVm = KDF(SKFV, PKCVm , FID)

Note that our scheme supports very fine-grain group-key management. A CV can decide
that a limited number of FPGAs are combined to a set that share a common key pair
(SK CVi

, PK CVi
), e.g. all FPGAs that are licensed to a specific system developer. Hence,

by defining distinct classes for each SD incorporating the IP core, the CV can make sure
that — in case that the secret key SK CVi

for a specific SD is revealed by accident — the
ability to clone devices applies only to that system developer rather than to the entire
system. In particular, the abuse of this secret key SK CVi

is simple to trace back to the
origin, hence the corresponding system developer for which this secret key was issued can
be called to account.
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5 Discussion of requirements and assumptions

5.1 Requirements

Our scheme requires the FPGA vendor to implement certain functions as hard blocks in
addition to allowing access to various keys.

Bitstream encryption and authentication: Bitstreams must be cryptographically
authenticated in addition to decryption as they are processed by the configuration block.
This is done to avoid any tampering of the bitstreams by an attacker, e.g., to modify
security-relevant components in a way to learn the key from some integrated information
leakage. Note that many high-end FPGA devices already include an integrated symmetric
decryption core to deal with encrypted bitstreams. The advantages of having both is
discussed by Drimer [9], along with the benefits of separating the two functions to allow
bitstream to be authenticated without being encrypted.

Secure keystore: Non-volatile storage for both FID and KFPGA has to be provided
with the former being readable from the fabric and the latter only readable by decryption
the engine. Note that both parameters do not necessarily require to be changed so that
one-time programmable memory can be used. Key storage should be designed such that
physical or side-channel attacks are impractical. It is also important for the write access
to the key memory to be atomic, in the sense that it only allows all key bits to be replaced
at once. Write access to parts of the key memory, such as individual bytes, could be used
to exhaustively search for the write operation that does not change the behavior of the
key and thereby reveal individual key bits.

Partial reconfiguration: In general, partial reconfiguration defines distinct portions
in an FPGA design which can be reconfigured while the rest of the device remains in
active operation. We do not required partial reconfiguration for our scheme, though
the software to generate these partial bitstreams would be used as well as the ability to
address specific configuration frames within the FPGA. In addition to that we need a new
bitstream command that tells the configuration logic which key to use.

5.2 Assumptions

In addition to requirements on the FPGA devices, we make the following assumption.

Trusted parties: We assume that the FPGA vendor is a trusted party to all partici-
pates. Everyone must trust that the FPGA vendor is not doing anything malicious inside
of the personalization bitstream that creates KCVi

and does not divulge any keys it is
storing. System developers already trust the FPGA vendor to provide them with a func-
tional FPGA that will not compromise their systems. That said, if the scheme is widely
adopted or concerns arise about the FPGA vendor having too much control over fielded
systems, a vendor-independent entity could program and store the keys, and encrypt the
personalization bitstreams. This is at a logistical cost of having the FPGAs go through
another hand on the way to the system developer, though a dedicated entity managing
keys can guarantee the security of keys better than vendors.

Cryptographic implementations: We also assume that the cryptographic primitives
and security parameters chosen (key and hash lengths) are computationally secure such
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that no attacker will be able to compromise the system by brute force and other known
attacks. Most modern FPGAs use the strong AES-256 for bitstream decryption. For the
recommendation of bit sizes for public-key cryptography, we follow Lenstra and Verheul
[21] and assume ECC algorithms and cryptographic hash functions with 256-bit as secure,
e.g. ECC over NIST-256 prime and SHA-2 hash. The implementation of these primitives
are assumed to be fault-tolerant and secure against side-channel attacks, ones that may
allow the attacker to extract keys by observing timing variations, power consumption, or
electromagnetic emanations while the device is in operation. Physical attacks are also
assumed to be out of reach of the attacker such that keys cannot be extracted, or disabled
functions be re-enabled (such as readback).

Communication between parties: The communication between the system developer
and cores vendors should take place over secure and authenticated channels for to ensure
non-repudiation and prevent man-in-the-middle attacks. This can be achieved by using
a common Public-Key Infrastructure (PKI). Note that the public key pair issued by the
FPGA vendor must be certified under the PKI as well. This avoids that an attacker can
easily replace the original with a forged personalization bitstream (using the attacker’s
own public key pair) which, for example, could support the extraction of the generated
key KCV from the FPGA before it is written to the key store. Having a certified key pair
from the FPGA vendor, the core vendor can be assured that all the issued and encrypted
COREs can be only used with FPGAs on which keys using the original PB have been
established.

6 Evaluation

This section covers aspects of the protection scheme with respect to advantages and dis-
advantages over other proposals as well as its general practicability in terms of additional
overhead and costs.

6.1 Advantages

Our scheme has some notable advantages over current proposals.

Small, scalable and optional. The additions to the FPGA by the vendor are min-
imal and the current use model for FPGAs is unchanged. Bitstream configuration and
encryption is still used as before, so from the system developer’s point-of-view, this is
an opt-in feature that can simply be ignored if not used. Furthermore, developers can
use the scheme for their own designs by having portions of their designs encrypted and
authenticated under different keys based on their content. This is particularly interesting
for designs having an integrated soft core microprocessor. Soft and hard processors use
RAM blocks to store compiled code, so an application designers could use a dedicated
key for RAM block to protect their embedded software application. FPGA vendors can
gradually introduce the scheme across several generations starting with adding bitstream
authentication and then gradually adding additional key storage for more than a single
core encryption. The vendors are not limited to any particular KDF, and the personal-
ization bitstream can use any type that maintains the security properties while using the
latest architectural advances in new generations of FPGAs.
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Use of established primitives. Our protection model relies on well-established crypto
primitives like Diffie-Hellman key exchange and cryptographic hash functions for which
many FPGA-based implementations have been proposed in the open literature. As an
alternative, Schaumont and Guajardo, for example, proposed design protection schemes
which use physical unclonable functions (PUF) for unique key generation. PUFs seem
attractive for authenticating devices, as they can produce a key on-demand based on the
physical properties of the device. Their main advantages are: creating a model for faking
PUFs is designed to be hard given that is it based on physical properties of the individual
die; derived keys “exist” only when needed, and are not permanently stored; invasive
tampering changes the properties of the PUF such that the correct key can no longer
be reproduced; there is no need to program a key, and it does not even need to leave
the device; random challenge-response pairs can be created with some PUFs such that a
unique string is generated for the purpose of authentication; PUFs should be scalable in
that more of them can be generated according to security needs; and finally, for FPGAs,
several of the proposed PUF structures can already be realized in existing devices.

When used for identification and to produce keys for cryptographic applications, PUFs’
output should be unique for each die and reproducible for a given die irrespective of
temperature and voltage variation. These properties are quite challenging to achieve and
pose the most difficulty in the generation of consistent, yet randomly distributed, bit
strings. PUFs are not a mature technology, and may not be so for a while to come, so
we opted to use established techniques in order to increase the likelihood of adoption by
the risk-averse FPGA vendors. That said, we are able to use PUFs in our scheme for the
generation of unique IDs and keys once those become reliable.

Moreover, additionally to keys generated by PUFs, True Random Number Generators
(TRNG) could also be used to establish random keys KCVi

inside the FPGAs. A few
implementations for cryptographically secure RNGs in FPGAs are already available [19,
24]. Secret values created by TRNGs can be installed as KCVi

in the keystore during
personalization stage and thus can even replace the necessity of a fixed FID inside the
device. The identification of the device is then solely based on the uniqueness of the key
which, however, must be transferred confidentially to the core vendor. One solution can
rely on public key encryption like RSA or ElGamal with which the generated key KCVi

is encrypted using the CV’s public key PK CV inside the PB. Next, the encrypted key
EPKCV

(KCVi
) leaves the FPGA device and is sent back to the CV who, in turn, then

decrypts KCVi
with this and generates the specifically encrypted CORE. In this case, the

personalization bitstream employs a TRNG and a public-key encryption instead of a key
derivation function based on Diffie-Hellman. Although we could use TRNGs, we think
that the system would be more robust if we can achieve the same results using primitives
that are less prone to tampering, as TRNGs are.

Configuration times. If we take the time it takes for today’s FPGAs to process an
encrypted bitstream as a baseline, our scheme does not adversely affect it. The transition
from one key domain to another and the changing of frame addresses will only introduce
very short delays. This is the case where keys are permanently stored in the FPGA
(after the personalization bitstream has been “executed” at the developer’s). However,
in the case where volatile key storage is used (for CVi’s) the personalization bitstream
would need to be loaded on every power-up, significantly reducing power-on times. We
also assumed that bitstreams are authenticated, which is a function that does not exists
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today, so it too may introduce delays to configuration times depending on how it is
implemented.

Incentives. Security in practice is best when the parties that can enhance, or are in
charge of, security are held accountable in cases of breach. It is therefore important to
consider the incentive structure of any scheme in order to make sure that those are aligned
correctly. In our scheme, the system developer can only compromise his own keys, so there
is a strong incentive for keeping those safe. Similarly, compromise of the cores vendors’
keys damage the cores vendors themselves. Both, however, rely on the the symmetric
keys KFPGAj

and secret keys SKFPGAj
kept by the FPGA vendor, who is considered a

trusted party. Compromise of these keys will invalidate the security of the whole scheme.
The FPGA vendor has reputation to lose, though this may not be enough to make sure
keys are kept safe. Therefore, we propose that when system developers and core vendors
enroll for the scheme, the FPGA vendor will guarantee compensation in case keys are
compromised.

6.2 Disadvantages

Of course, no system is perfect; here we discuss the disadvantages of the presented scheme.

Loss of optimization. Normally, when functional blocks are combined at the HDL level
the synthesizer can optimize the design for performance and resources, but since this will
not be possible with our scheme some resources will be potentially “lost”. In addition,
it is inevitable that some small portions of the allotted partition will not be fully used
due to the frame resolution and initial partitioning, so the overall utilization may not be
optimal. That said, two things can improve the situation. Firstly, careful planning and
precise information from both the system developer and cores vendor can minimize the
unused resources. Secondly, if the cores vendor’s design is already optimized (for either
throughput or area) further optimization by the EDA tools will not give significantly
better results, and the design will already have been compacted to the tightest area
possible.

Reliable PB operation in an untrusted domain. The key establishment of KCV

inside of the FPGA takes place in the untrusted domain of the system developer. In the
“core protection” scenario the system developer is a potential adversary, so the implemen-
tation of cryptographic elements in the personalization bitstream must be fault-tolerant
and tamper-resistant. Countermeasures against device tampering are required to check if
the module is executed under unconventional conditions, e.g, over-voltage, increased tem-
perature or clock frequency. A fairly easy approach to detect operational faults caused
by such conditions is to use multiple, identical cryptographic components in the per-
sonalization module operated at different clocks domains, or insert randomization. If
sufficient countermeasures are introduced [2, 20], we can assume that this will satisfy the
cost-conscious developer.

Bandwidth and availability. An important consideration is the amount of network
bandwidth required between the system developer and cores vendors since every core has
to be individually encrypted for each FPGA and transferred between both parties. Since
the data is encrypted compression will not be beneficial, so a few megabytes of data is
transferred for each instance; large volume transaction may require gigabytes of data to
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be transferred. We do not view this as a major concern, but something that must be
addressed as part of the scheme’s evaluation. The protocol exchanges can be made in
one lump for a batch of FPGAs, as opposed to requiring a challenge response exchange,
which means that data can be delivered on magnetic or optical media by a courier; there
is nothing in our protocol that prevents this from happening. This property also defends
against a denial of service attack targeting the cores vendors’ servers.

We can minimize the bandwidth by issuing encrypted tokens to each FPGA instead of
the encrypted core. The protocol is used to produce KCV as before, but instead of the
CV sending SD the encrypted core, it sends a token encrypted using KCV that contains
the the key needed to decrypt KCV′ . The advantage of this extension is that only tokens
need to be distributed rather than the cores themselves, and only a single core instance,
encrypted using KCV′ is distributed. Of course, KCV′ is limited to a particular core from
a core vendor and system developer’s FPGA FIDs.

Simulation and Trust. Although we suggest that a crippled version of the core (as
a bitstream matching the partition) be delivered to system developers for integration
and testing, there is no way for them to check that the core does not contain malicious
functions or Trojan horses. Since the core is a black box to the system developer he
can only test it using input and output vectors, which quite possibly will not detect any
extra functionality. Even if our scheme allows the vendor to test the core as a black box
once it is loaded onto the FPGA, the fact that each core is encrypted using a different
key requires testing each one, which may be costly. To what extent is this a problem?
We assumed a cost-conscious developer, one that is interested in low cost solutions and
is generally trusting (unless the developer is well funded, this is a pre-requisite as there
is no way to verify that all EDA and hardware used are trust-worthy). The developer
relies on social means such as contracts, agreements and the reputation of the vendor he
purchases hardware and software from. One can say that trust has a price; if the developer
wanted to verify the core, he would need to pay to see it. We can also have a commitment
scheme where the software is able to cryptographically commit to a particular output,
though that would require more trust in the software and complicate the protocol, which
we wanted to avoid.

7 Implementation considerations

We will give some brief suggestions and implementation details how to realize the partic-
ipating components, and discuss their expected system costs.

7.1 Implementing the personalization module

In the following we will demonstrate the feasibility of the personalization module that
incorporates the implementation of a key establishment scheme.

For this proof-of-concept implementation, we realized an ECC core over prime fields,
which forms the basis for an Elliptic Curve Diffie-Hellman (ECDH). Parameters for this
implementation have been chosen by a trade-off of long-term security and efficiency: We
designed an ECDH component over GF (p) where p is a 160-bit prime, which is sufficient
for mid-term security nowadays.
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We take the smallest Virtex-4 (FX12) FPGA with an integrated AES-256 bit stream
decryption core as a reference device. For the implementation of the KDF according
to [5], we integrated an implementation of SHA-1 as the cryptographic hash function
h(x) with an output of 160 bits. During key generation, the SHA-1 hash function is
executed twice using three different inputs: Given two 32-bit counter values (effectively,
two constants) c0, c1, a 128-bit FID and the ECDH result E, a 256-bit AES key KFPGA

can be derived as follows:

Hi = h(ci || E || FID) for i ∈ {0, 1}
KFPGA = S(H0 ||H1),

where S(x) is a selection function choosing the first 256 out of 320 input bits and where “||”
denotes concatenation.

Component 4-input LUT Flip flops BRAM Frequency
ECDH Core 5,674 (51%) 767 (7%) 5 65 MHz
SHA-1 Core 1102 (9%) 689 (6%) 0 76 MHz

Table 2: Implementation details for crypto components of the PB synthesized for a Xilinx
Virtex-4 FX12-12 FPGA

It should be remarked that all implementations have been developed for an optimal area-
time product so that reductions in logical elements can still be achieved if data throughput
is not a primary issue. To compute the the ECDH key with 160 bit based on the imple-
mentation presented above, it takes 205,200 clock cycles on average. The SHA-1 requires
96 clock cycles to produce a 160 bit output for a single input block, i.e., for two block
computations 192 cycles in total. Assuming all components in the PB to run at a clock
frequency of at least 50 MHz, the generation of a single AES-256 key will take 4.1 ms.
This run-time is negligible in case that a single setup is performed establishing the KCV

in non-volatile memory of the key store. However, considering a volatile key store where
the key establishment must take place on each power-up prior to loading the application,
this time must be taken into account in addition for each key to be established to the an
initial latency before the application is fully configured.

Concluding, the implementations at hand are small enough to fit even the smallest Virtex-
4 device (providing a total of 5,472 slices with 10,944 LUTs and flip flops each) with some
remaining logical resources to add functionality providing tamper resistance and fault
tolerance.

Beside the KDF implementation using the Diffie-Hellman key exchange, the PB can make
use of a combination of TRNG and public-key encryption. Many public-key encryption
algorithms have successfully been implemented in FPGAs, e.g., low footprint RSA imple-
mentations have been proposed in [11, 18, 22] and are already available in ready-to-use IP
cores by FPGA vendors like Altera. Moreover, experimental TRNGs have been presented
in [19, 24] so that this alternative for the PB should be possible as well.

8 Conclusions

We proposed a new many-core protection scheme for FPGA designs that provides an
appealing solution to the FPGA “cores distribution problem”, though with only mod-
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est modifications to current FPGAs and their use models. Starting with the FPGA
vendor programming the device with an “FPGA key”, a resource-preserving personal-
ization bitstream, temporarily located in the reconfigurable logic, is used for one-time
key-establishment. In our model we not only cover the protection of a “virtual applica-
tion specific standard product” where a ready-made core needs to be secured as a whole,
the scheme is also applicable to designs consisting of many cores from multiple core ven-
dors. For each individual core a pay-per-use license model can be used where each single
core vendor can enforce how many of cores are used in the field by the system developer.
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